Statistical parametric speech synthesis with joint estimation of acoustic and excitation model parameters

نویسندگان

  • Ranniery Maia
  • Heiga Zen
  • Mark J. F. Gales
چکیده

This paper describes a novel framework for statistical parametric speech synthesis in which statistical modeling of the speech waveform is performed through the joint estimation of acoustic and excitation model parameters. The proposed method combines extraction of spectral parameters, considered as hidden variables, and excitation signal modeling in a fashion similar to factor analyzed trajectory hidden Markov model. The resulting joint model can be interpreted as a waveform level closed-loop training, where the distance between natural and synthesized speech is minimized. An algorithm based on the maximum likelihood criterion is introduced to train the proposed joint model and some experiments are presented to show its effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing Mismatch in Training of DNN-Based Glottal Excitation Models in a Statistical Parametric Text-to-Speech System

Neural network-based models that generate glottal excitation waveforms from acoustic features have been found to give improved quality in statistical parametric speech synthesis. Until now, however, these models have been trained separately from the acoustic model. This creates mismatch between training and synthesis, as the synthesized acoustic features used for the excitation model input diff...

متن کامل

A novel irregular voice model for HMM-based speech synthesis

State-of-the-art text-to-speech (TTS) synthesis is often based on statistical parametric methods. Particular attention is paid to hidden Markov model (HMM) based text-to-speech synthesis. HMM-TTS is optimized for ideal voices and may not produce high quality synthesized speech with voices having frequent non-ideal phonation. Such a voice quality is irregular phonation (also called as glottaliza...

متن کامل

Statistical parametric speech synthesis with a novel codebook-based excitation model

Speech synthesis is an important modality in Cognitive Infocommunications, which is the intersection of informatics and cognitive sciences. Statistical parametric methods have gained importance in speech synthesis recently. The speech signal is decomposed to parameters and later restored from them. The decomposition is implemented by speech coders. We apply a novel codebook-based speech coding ...

متن کامل

Deep neural network-based statistical parametric speech synthesis system using improved time-frequency trajectory excitation model

This paper proposes a deep neural network (DNN)-based statistical parametric speech synthesis system using an improved time-frequency trajectory excitation (ITFTE) model. The ITFTE model, which efficiently reduces the parametric redundancy of a TFTE model, improved the perceptual quality of the vocoding process and the estimation accuracy of the training process. However, there remain problems ...

متن کامل

Study on Unit-Selection and Statistical Parametric Speech Synthesis Techniques

One of the interesting topics on multimedia domain is concerned with empowering computer in order to speech production. Speech synthesis is granting human abilities to the computer for speech production. Data-based approach and process-based approach are the two main approaches on speech synthesis. Each approach has its varied challenges. Unit-selection speech synthesis and statistical parametr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010